إرشادات مقترحات البحث معلومات خط الزمن الفهارس الخرائط الصور الوثائق الأقسام

مقاتل من الصحراء
Home Page / الأقســام / موضوعات علمية / المياه




هنري كافينديش
آثار الأمطار الحمضية
أرنست روثرفورد
الأمواج الناتجة عن الرياح
النيل الأزرق
التلوث الكيميائي
التلوث الفيزيائي
الركام المزني
السمحاق الركامي
السمحاق الطبقي
الطخاء أو السمحاق
السحاب الطبقي المتوسط
السحب المزنية الطبقية
السحب الركامية
السحب الطبقية (الرهج)
الكرة الأرضية
بحيرة ماء عذب
تخزين النفايات الصناعية
بريستلي وشيلا
دلتا نهر النيل
خاصية التوتر السطحي
صور الماء المختلفة

منسوب الماء
الأمطار الحمضية
المد والجزر
المياه الجوفية
المياه الجوفية
المدارات الإلكترونية
التركيب الذري للهيدروجين
التركيب الذري للأكسجين
الجبال الجليدية
اندفاع المياه الجوفية من العين
الرابطة التساهمية
السحاب الناتج عن عملية النتح
السحب من البخر والنتح
تلوث الأنهار
تلوث المياه والأمطار الحمضية
تجاذب جزئي الماء
ترابط جزيئات الماء
تركيب الذرة
تركيب جزيء الماء
تركيز أيونات الهيدروجين
تكون الأنهار
جهاز قياس الأس الهيدروجيني
دورة الماء
حركة الأمواج
عملية البناء الضوئي
ذوبان ملح الطعام في الماء
قاع المحيط




مقدمة

أولاً: صور وجود الماء على الأرض كمادة

1. صور وجود الماء على الأرض

على الرغم من كبر المساحة التي يغطيها الماء، من سطح الكرة الأرضية، إلاّ أن الحجم الفعلي للماء مقارنة بحجم الكرة الأرضية، يبدو ضئيلاً. فإذا تخيلنا الأرض مثل برتقالة، فإن الحجم الإجمالي للماء لا يكاد يملأ ملعقة شاي، والحجم الحقيقي الذي تحتويه هذه الملعقة هو حوالي 1.5 مليار كم3.

ويشكل ماء المحيطات حوالي 97% من حجم الماء الموجود على سطح الأرض، إلاّ أن هذا الماء مالح ولا يصلح للاستخدام الآدمي، من شرب، أو زراعة، ونحو ذلك، نتيجة ذوبان العديد من الأملاح فيه. أمّا كمية الماء العذب الصالحة للاستهلاك الآدمي، فلا تتجاوز 0.3% من الماء الموجود في الكرة الأرضية. ويتضمن هذا الماء، ماء البحيرات (اُنظر صورة بحيرة ماء عذب)، والأنهار (اُنظر صورة النيل الأزرق)، والمياه الجوفية الموجودة في أقل من نصف ميل عمق. ويدخل في هذا، حساب كمية الماء العذب الموجود على هيئة بخار ماء في الغلاف الجوي، الذي سوف يتحول في النهاية إلى أمطار، والرطوبة الموجودة في تربة الأرض السطحية.

وتمثل الجبال القطبية Polar Ice Caps (اُنظر شكل الجبال الجليدية)، غالبية الماء العذب الموجود على سطح الكرة الأرضية، حيث تصل نسبتها إلى حوالي 2,2% من إجمالي كمية المياه في الأرض، ممثلة ما يزيد عن ثلاثة أرباع مخزون الماء العذب في العالم.

أمّا المياه الجوفية Underground water، فإن نسبتها تصل إلى حوالي 0.6% من كمية الماء الموجود في الأرض، وهي إمّا أن تكون قريبة من سطح الأرض فتكون عذبة، وإمّا أن تكون على أعماق سحيقة، فنجد في مياهها نسبة عالية من الأملاح، التي ذابت فيها أثناء رحلتها الطويلة إلى باطن الأرض (اُنظر شكل المياه الجوفية) و(جدول صور المياه على سطح الأرض).

2. تركيب الماء وخصائصه الكيميائية

لا يُعدّ الماء، فقط، أكثر المواد وجوداً على الأرض، بل يُعدّ، كذلك، أكثرها غرابة، إذ لا تستطيع مادة على سطح الأرض، أن تحل محل الماء أو تقوم بدوره، كما لا توجد أي مادة معروفة، حتى الآن، لها خصائص مشابهة للماء. فالماء هو استثناء لكثير من قوانين الطبيعة، وذلك لخصائصه الفريدة.

ويتكون الماء من أجسام متناهية الصغر، تسمى "جزيئات". وقطرة الماء الواحدة تحتوي على الملايين من هذه الجزيئات. وكل جزيء، من هذه الجزيئات يتكون من أجسام أصغر، تسمى "ذرات" (اُنظر ملحق التركيب الجزيئي وعملية البناء الضوئي). ويحتوي جزئ الماء الواحد على ثلاثة ذرات مرتبطة ببعضها، ذرتي هيدروجين وذرة أكسجين (اُنظر شكل تركيب جزيء الماء). وقد توصل إلى هذا التركيب الكيميائي للماء عام 1860، العالم الإيطالي "ستنزالو كانزارو" Stanisalo Cannizzarro.

والهيدروجين، هو أخف عناصر الكون، وأكثرها وجوداً به، حيث تصل نسبته إلى أكثر من 90%، وهو غاز قابل للاشتعال. والرقم الذرى للهيدروجين هو 1، ووزنه الذرى 1.008. كما يوجد الهيدروجين، كذلك، في الفراغ الفسيح بين المجرات والنجوم، بنسبة ضئيلة (اُنظر ملحق التركيب الجزيئي وعملية البناء الضوئي).

أمّا عنصر الأكسجين (اُنظر ملحق التركيب الجزيئي وعملية البناء الضوئي)، فهو ثالث أكثر العناصر وجوداً في الكون، حيث يوجد بنسبة 0.05%، وهو غاز نشط يساعد على الاشتعال، ورقمه الذرى 8، ووزنه 16. كما يُكَوِّن الأكسجين حوالي 20% من الهواء الجوى، وهو ضروري لتنفس الكائنات الحية، ويدخل في التركيب العضوي لجميع الأحياء، مع الهيدروجين والكربون. وعلى الرغم من أن الهيدروجين غاز مشتعل، والأكسجين غاز يساعد على الاشتعال، إلاّ أنه عند اتحاد ذرتي هيدروجين مع ذرة أكسجين، ينتج الماء الذي يطفئ النار.

والماء النقي لا يحتوي على الأكسجين والهيدروجين فقط، بل يحتوي على مواد أخرى ذائبة، ولكن بنسب صغيرة جداً. لذا، فإنه يمكن القول بأن الماء يحتوي على عديد من العناصر الذائبة، إلاّ أن أغلب عنصرين فيه، هما الهيدروجين والأكسجين.

والماء في صورته النقية سائل عديم اللون والرائحة، يستوي في ذلك الماء المالح والماء العذب. إلاّ أن طعم الماء يختلف في الماء العذب، عنه في الماء المالح. فبينما يكون الماء العذب عديم الطعم، فإن الماء المالح يكتسب طعماً مالحاً؛ نتيجة ذوبان عديد من الأملاح به.

3. كيف يمكن للماء التماسك كمادة

يرتبط الهيدروجين بالأكسجين داخل جزيء الماء، برابطة تساهمية Covalent Bond. فكل ذرة هيدروجين، تحتاج إلى إلكترون إضافي في مدارها الخارجي، لتصبح ثابتة كيميائياً. وكل ذرة أكسجين تحتاج إلى إلكترونين إضافيين في مدارها الخارجي، لتصبح ثابتة كيميائياً. لذا فإننا نجد في جزئ الماء ذرتين من الهيدروجين، تشارك كل واحدة بإلكترونها مع ذرة الأكسجين، ليصبح في المدار الخارجي لذرة الأكسجين 8 إلكترونات، وبذلك يكون مكتملاً، وفي حالة ثبات كيميائي. وفي الوقت نفسه، تشارك ذرة الأكسجين بإلكترون من مدارها الخارجي، مع كل ذرة هيدروجين، لإكمال المدار الخارجي لذرة الهيدروجين، ليصبح إلكترونين، وفي حالة ثبات كيميائي. ويسمى هذا النوع من الروابط "بالرابطة التساهمية" Covalent Bond، حيث تشارك فيه كل ذرة بجزء منها مع ذرة أخرى، لتكون جزيئاً قوياً للغاية يصعب تحلله (اُنظر شكل الرابطة التساهمية).

ويتجاذب كل جزيء ماء بالجزيئات المجاورة له، من خلال تجاذب كهربي، ناتج عن اختلاف الشحنات الكهربية (اُنظر شكل تجاذب جزئي الماء). فذرتا الهيدروجين تلتقيان مع ذرة الأكسجين في نقطتين، بزاوية مقدارها 105 درجة، في شكل هندسي غريب، بما ينتج عنه توزيع الشحنات الكهربية، بشكل يشبه قطبي المغناطيس. فطرف ذرة الأكسجين يمثل شحنة سالبة، وطرفا ذرتي الهيدروجين يمثلان شحنة موجبة. ونتيجة لهذا الاختلاف في الشحنات الكهربية، تتجاذب كل ذرة هيدروجين في جزئ الماء، مع ذرة أكسجين في الجزيء المجاور، بنوع من التجاذب الكهربي، يطلق عليه "الروابط الهيدروجينية" Hydrogen Bond (اُنظر ملحق التركيب الجزيئي وعملية البناء الضوئي). وتُعد الروابط التساهمية والهيدروجينية بين جزيئات الماء، مسؤولة عن الخواص الفريدة للماء، مثل: ارتفاع درجة الحرارة النوعية، والحرارة الكامنة للانصهار، والتبخر. كما أنها مسؤولة عن صفات التوتر السطحي واللزوجة، كما سيأتي ذكره فيما بعد.

وجزيئات الماء في حركة دائمة، وتعتمد الحالة التي يكون عليها الماء (غازية أو سائلة أو صلبة) على سرعة حركة هذه الجزيئات. فعند انخفاض درجة الحرارة، إلى درجة تساوى أو تقل عن الصفر المئوي، تفقد جزيئات الماء طاقتها، وتقل حركتها، ويزيد ترابطها بالروابط الهيدروجينية، بما يزيد من الفراغات بين جزيئات الماء. ويرتبط كل جزيء مادة في هذه الحالة، بأربعة جزيئات مجاورة بروابط هيدروجينية في شكل ثلاثي الأبعاد، كما في حالة الجليد. ومعظم المواد تنكمش بالبرودة، إلاّ أن الماء حينما يبرد، ينكمش حتى يصل إلى 4 درجات مئوية، ثم يبدأ بعدها في التمدد بزيادة انخفاض درجة الحرارة، ويُعد الماء مثالاً للخروج على القاعدة العامة في العلاقة بين درجة الحرارة والكثافة.

فعند انخفاض درجة الحرارة إلى ما تحت الصفر المئوي، يتحول الماء إلى ثلج، ويقل عدد جزيئات الماء المترابطة، ويزيد الفراغ بينها ـ مقارنة بمثيلتها الموجودة في الحجم نفسه من الماء ـ فتتمدد في الحجم وتقل كثافتها، وتطفو على هيئة قشرة الجليد فوق سطح الماء. وتُعد هذه الخاصية، نعمة عظيمة من نعم البارئ على الكون. فلو خضع الماء للقاعدة العامة للعلاقة بين الكثافة ودرجة الحرارة، لازدادت كثافة الثلج المتكون على السطح عن بقية الماء، وهبط إلى القاع، معرضاً سطح الماء، الذي تحته، إلى درجة حرارة منخفضة، فتتجمد هي الأخرى، وتهبط إلى القاع. وهكذا حتى تتجمد كل طبقات الماء، وتستحيل معها الحياة، في مياه المناطق القطبية، أو شديدة البرودة، والمتجمدة. إلاّ أنه في الحقيقة، ومع انخفاض درجة حرارة الجو، تتجمد طبقات الماء العليا فقط، وتقل كثافتها وتتمدد، فتطفو على سطح الماء، وتعزل بقية الماء تحتها، عن برودة الجو، فيبقى سائلاً ويسمح باستمرار الحياة.

وبازدياد درجة الحرارة (أعلى من الصفر المئوي)، تكتسب جزيئات الماء قدراً أعلى من الطاقة، وتزداد حركتها، وتتقارب المسافات بينها، ويتحول الماء إلى صورته السائلة (اُنظر شكل ترابط جزيئات الماء).

ومع ازدياد ارتفاع درجة الحرارة، يزداد قدر الطاقة الذي تكتسبه جزيئات الماء، وتزداد حركتها، وتتباعد المسافات بينها، وتتحول إلى الحالة الغازية، حيث يوجد جزئ الماء في أغلب الأحوال بصورته المنفردة. وتبلغ أقصى درجة لتحول الماء إلى بخار ماء، عند وصوله إلى 100°م، وهي درجة غليان الماء. إلاّ أن هذا لا يمنع من تحول الماء في درجات الحرارة العادية إلى بخار ماء بفعل الطاقة المكتسبة من الشمس، وإن كان بدرجة أقل من تلك التي تحدث عند درجة الغليان.